DOCUNENT RESUNE

ED 100 371 - IR 001 470
AUTHOR Claybrook, Billy G.
TITLE An Artificial Intelligence Approach to the Syambolic

Pactorization of Multivariable Polynomials., Technical
Report No, CS74019-R.

INSTITUTION Virginia Polytechnic Inst. and State Univ,,
Blacksburg. Dept. of Computer Science.

PUB DAT® Apr 74

NOTE 58p.

EDRS PRICE MP=-$0.75 HC~-$3.15 PLUS POSTAGE

DESCRIPTORS *Algorithms; *Artificial Intelligence; *Computer

Prograas; Computers; learning Theories; Mathematical
Applications; *Matliematical Models; Mathematics;
Models

IDENTIFIERS Berlekamp; *Pactorization; Heuristics; POLYPACT;
vang

ABSTRACT

A nev heuristic factorization scheme uses learning to
improve the efficiency of determining the symbolic factorization of
multivariable polynomials with interger coefficients and an arbitrary
nusber of variables and terms. The factorization scheme nakes
extensive use of artificial intelligence techniques (e.q.,
model-building, learning, and automatic classification) in an atteapt
to reduce the amount of searching for the irreducible factors of the
rolynomial. The approach taken to polynomial factorization is quite
different from previous attempts because: (1) it is distinct from
numerical techniques; (2) possibilities for terms in a factor are
generated from the terms in the polynomial; and (3) a
reclassification techniquz is used to allow the application of
different sets of heuristics to a polynomial during factorization
attempts on it, Data presented show the importance of learning to the
efficiency of operation of the scheme. Pactorization times of
polynomials factored by both the scheme described in this paper and
Wang's implementation of Berlekamp's algoritha are given and
compared, and an analysis of avariance experiment provides an
indication of the significant sources of variation influencing the
factorization time. (Author/nGcec)

Ky vl - o, e o S b b 1 b e il e . — L T

EC 100371

Technical Repcrt CS74019-R

AN ARTIFICIAL INTELLIGENCE

APPROACH TO TFE SYMBOLIC
FACTORIZATION OF MULTIVARIABLE
POLYNOMIALS

Billy G. Claybrook

US DEPARTMENT OF HEALTH
EDUCATION A WELFARE
NATIONAL INSTITUTE OF

EQOUCATION

THiy DOCUMENT WAS BEEN REPRO
OUCED EXACTLY AS RECEIVED FROM
TaE PERSON OR ORGANIZATION ORIGIN
ATING 1 POINTS G VIFEW OR OPINIONY
NTATED DO NOT NECEYSARILY REPRF
SENTOFFICIAL NATIONAL INSTITUTE OF
EDULCATION FOSITION OR POLICY -

April 1974

¢70

Departuent of Computer Science, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia
24061

TR ool

. 2/4

ABSTRACT

A new heuristic factorization scheme that uses learning to improve
the efficiency of determining the symbolic factorization of multivarviable
polynomials with integer coefficients and an arbitrary number of variables
and terms is described. The factorization scheme makes extensive use of
Artificial Intelligence tectniques, e.g. model-building, learniag, and
automatic classification in an attempt to reduce the amount of searching
for the irreducible factors of a polynomial. The approach taken to
polynomial factorization is quite different from previous_attempts because:
(1) it is distinct from numerial techniques, (2) possibilities for terms
in a factor are generated from the terms in the polynomial, and (3) a
reclassification technique is used to allow the application of different
sets of heuristics to a polynomial during factorization attempts on it.

Tables are presented that demonstrate the importance of learning to
the efficiency of operation of the scheme. Factorization times of
polynomials factored by both the scheme described in this paper and Wang's
implementation of Berlekamp's algorithm are given and compared and an
analysis of variance experiment provides an indication of the significant

sources of variation influuncing the factorization time.

I. INTRODUCTION

Before 1967, attempts to determine the symbolic factorization of multi-
variable polynomials with an arbitrary number of terms and variables using |
both heuristic methods and algebraic methods proved to be largely unsuccessful.
These attempts were able to factor only simple polynomials and were time con-
suming. In 1967 Berlekamp [3] published a new algebraic algorithm for factoring
univariate polynomials with integer coefficients. Various modifications and
extensions of Berlekamp's algorithm [19], [24], [26] have led to other algorithms
for factoring univariate and multivariate polynomials. In particular, Wang's
algorithm [24) appears vo be one of the most efficient for both univariate and
multivariate polynomials. Wang's algorithm factors many multivariate polynomials
efficiently; however, there are some types of polynomials with which it has problems.

This paper‘describes a new neuristic factorization scheme that uses learning
and other heuristic programming techniques to improve the efficiency of determining
the symbolic factorization of multivariable polynomials with integer coefficients
and an arbitrary number of variables and terms., This factorization scheme is
applied only to multivariable polynomials. We do not try univariate ones (except.
for a few special cases) since Berlekamp's algorithm [2] is a clear winner in
most instances. This factorization scheme makes extensive use of Artificial
Intelligence techniques, e.g. model~building (18], learning, and automatic
classification in an attempt to reduce the amount of searching for all of the
irreducible factors of a polynomial. The reader should keep in mind that we are
not claiming that this scheme is a genéral factorization algorithm for there are
a few instances where factorization of a reducible polynomial could fail. However,
it does succeed in most instances. Polynomial factorization using heuristic

techniques is hasically a combinatorial problem. Our approach to factorization

Gt

is distinct from numerical techniques, e.g. Kronecker's algorithm [12], and
advanced algebraic techniques, e.g. Berlekamp's algorithm [2].
The primary purposes of this paper are:

1. to provide an overview of the implementation of the factorization
scheme in the learning program POLYFACT [5],

2. to present the fundamental details of the heuristic factorization
scheme and discuss its usefulness to polynomial factorization,

3. to describe Berlekamp's algorithm and indicate where it works well
and where it has problems,

4. to show that an Artificial Intelligence apprcach to factoring
multivariable polynomials is feasible for many multivariable
polynomials, and

5. to demonstrate that learning can improve the efficiency «! operation
in the solution of a complex problem such as polynomial ‘' ctorization.

The reader can interpret this paper jointly as one that describes a heuristic
factorization scheme, and as one that demonstrates the use of learning and
other Artificial Intelligence techniques in solving complex problems.

Section II presents an overview of POLYFACT and the implementation of
this factorization scheme. Section III provides related work in polynomial
factorization and learning programs. Section IV gives a detailed description

of the factorization scheme, and Section V presents results and possible

modifications.

IT. OVERVIEW OF POLYFACT

This section provides a brief description of the implementation of this
factorization scheme in the learning program POLYFACT and gives an overview of
the écheme itself (a detailed description appears in Section IV). The primary
objectives in the development of POLYFACT were:

1. to design a multivariable polynomial factoring program that can be
used 4s a vehicle in a complex-learning environment,

Y

2., to develop a representation for heuristics that allows for dynamic
creation and modification during program execution,

3. to show that learning through the dynamic modification of heuristics
can be used successfully in a complex environment to increase the
efficiency of the program,

4. (o demonstrate that a classification scheme can be used to allow the
program to extend itself to newly classified polynomials, and

5. to show that a classification scheme can be used as a mechansim for
implementing localized learning.

Description of POLYFACT

POLYFACT is written in FORTRAN V and implemented.on a UNIVAC 1108, POLYFACT
consists of over 230 subroutines and functions. Fig. 1 gives a flow diagram
describing the operatioh of POLYFACT. Polynomials are input to POLYFACT in
FORTRAN notation in either factored form (this form is allowed for convenience)
or in expanded form. Polynomials input in factored form are expanded by taking
the product of the factors (the factors may or may not be irreducible factors).

Prior to a factorization attempt each polynomial is completely simplified

(i.e. has all like terms combined) when the polynomial is placed into canonical
form. In this paper a simplified polynomial is one that has had like terms

combined. We consider a polynomial to be unsimplifiable if it has no terms that

can be combined during polynomial simplication (there are many reducible polyncmials

" whose factors when multiplied out do not have any like terms that can be combined).
We make the distinction between simplified and unsimglifiable polynomials to avoid
any misinterpretations by the reader that could occur in succeeding sections of

Z..... khis paper.

Representation of Polynomials

POLYFACT operates in a list processor environment with each cell consisting
of two consecutive FORTRAN words (each word on the 1108 consists of 36 bits). The

polynomials in POLYFACT are represented internally as a matrix of coefficients

— g}

-~

1]

BEST COPY AVAILABLE

D
O—

INPUT D:TERMINE CALL
POLYNOMIAL FEATURES GARBAGE
VECTOR COLLECTOR
O—i I
S\ v
PLACE TRAVERSE
POLYNOMIAL LASST-
IN CANONICAL FICATION
FORM TREE
REMOVE CALL
Mgig?ggL FACTOR

O—4 L

ANALYZE

CaLL JRP
MODEL- F“Ciggéigéloﬂ EXIT
BUILDER :

L.

Fig. 1. Macro flow diagram oi POLYFACT

BEST COPY AVAILABLE

and exponents. The matrix is represented by a 1list structure with all elements
in a row linked together as a right-linked list and all elements in a column
linked together as left~linked list. Each columm vector in the canonical form
corresponds to a term in the polynomial. The list representation of polynomials
allows POLYFACT to accept polynomials with an arbitrary number of variables

2
and terms, The internal representation of the r -nomial 3x y+5xz-9yz2 is

given in Fig. 2.

- — '—1—.—- H__. 0
3 5 -9
‘! = ﬂ-—. ——.,.!_... 0
2 1 '\‘
0 —_1—E—-. — 0
1 0 1
0 -———.F 0 0
a

Fig. 2 Canonical form of 3x2y+5xz—9y22

Row one in Fig. 2 contains the coefficients of the terms in the polynomial;
and rows two through four hold the exponents of variables x, y, and 2z,
tespeétively. The zeros in the left and right links of some of the cells
are list terminator indicators. We select this canonical form for its

simplicity of representation, ease of locating specific terms in the poly-

f-f}

nomial, and provision of the requirements of the model-builder.

Operation of POLYFACT

POLYFACT operates either in a training mode or learning mode.
POLYFACT also learns in both modes. While in the training mode,
the values of M and N and a simplified or unsimplifiable polynomial
indicator are input. The user can train POLYFACT for as long as he deems
necessary and then change the operation mode to the learning mode. POLYFACT
can begin operation in the learning mode instead of training mode, but
the training mode speeds up the rate of learning because less time is re-

quired to factor each polynomial. When POLYFACT is in the learning mode,

no helpful information is given to it. The results of the learning process

can be saved, and the training cycle omitted in subsequent uses of POLYFACT,

Overview of the Factorization Scheme

The factorization scheme implemented in POLYFACT relies on.Fhe fact
that a reducible polynomial can be written as the product of twolfactors,
one with M-terms and one with N-terms. Uuring a factorization attempt the
M-term factor is sought, and the N-term factor is determined by division of
the M~term factor into the subject polynomial. Then both factors are saved
and later reduced. POLYFACT attempt; to minimize the amount of searching
for the M-term factor by: (1) building 2 model fcr eack polynomial, (2) using

learning for term selection to initiate tne factorization process, and (3)

using learning to select term possibilities in the M-term :.1actor.

Classification of Polynomials

POLYFACT classifies po) yuomials according to certain features that
each exhibits (the featur:s are given in Section 1V). Through classifi-
cation the capability exists for applying specific heuristics to a desig-
nated polynomial. Two types of features are used in classificatioun:
surface features and hidden features. Surface features are those features
that can be determined by visible examination of the subject polynomial.
Hidden features are those features not immediately visible to either a
human or a pattern recognition program. The hidden features are detected
during a factorization attempt, i.e. during the factorization of a poly-
nomial characteristics are discovered that are not obvious from the initial
examination. The detection of hidden features during a factorization attenmpt
usually results in a reclassification of the polynomial unless the current
factorization attempt is successful. The reclassification process is a
powerful one since it provides the capability to automatically apply different
sets of heuristics to a single polynomial during its factorization. The
classification process is closely associated with the ability to dynamically
create and modify heuristics [6].

The features (both surface and hidden) that a polynomial exhibits determine
the heuristics used during a factorization attempt. In POLYFACT, the classi~
fication scheme is implemented as a binary classification tree. The classifi-
cation tree is automatically constructed during program execution. The binary
features vector of the polynomial is the address of a terminal node in the
tree. This terminal node contains a pointer to the set of heuristics for this

particularly classified polynomial.

The Model~Builder

A model [18] is created for each polynomial. The wodel is a means

| r reducing the amount of searching for a factor in a polynomial. There
is no learning associated with the model-builder in POLYFACT. The model-
builder tries to determine the values of M and N and the valid possibilities
for terms in the M~term factor (the word 'possibility" is used to denote
terms that are candidates for terms in the M-term factor). If the factor-
ization attempt is not successful with the current values of M and N then
either the polynomial is reclassified and the process repeated with M and N
unchanged; or the model-builder determines new values for M and N, and the
process is repeated. A complete description of the model-builder is pre-
sented in Section IV.

The initial implementation of this factorization scheme in POLYFACT
requires the explicit determination of the correct values of M and N before
the factorization of a polynomial can be successful. This requirement is
necessary because: (1) POLYFACT uses a heuristic division algorithm [5] that
requires the correct values of M and N for a succesaful division, and (2) the
determination of the M x N possibili;y 1ist (discussed in Section IV) re-
quires these two quantities. In Section V we provide another more operable
method for determining the value of N. This new method frees the model-
builder from the unenviable task of trying to determine the value of N prior
to a factorization attempt. This modificaciqn also allows the replacement

of the heuristic division algorithm by a conventional more efficient one,

9

Learning in POLYFACT

The learning schemes depend very hcavily on the capability of POLYFACT
to modify the heuristics dynamically. The importance of a representation
for heuristics that allows for dynamic modification is discussed by Clay-
brook and Nance [6]. The heuristics in POLYFACT are represented in the
first-order predicate cglculus language [16] and are interpreted during
program execution. Interpretation of the heuristics in POLYFACT is necessary
since they are modified dynamically during program execution,

We have stated that the amount of seafdhing for the M-term factor is
reduced by using learning to aid in the seléction of a term to initiate the
factorization process and to select term possibilities for the M-term factor.
The primary objective in term selection is to choose a term that leads to a
small search space. The heuristic associated with directing learning in
term selection utilizes the presumption that the term exhibiting the fewest
number of possibilities leads to the minimum search space.

The learning associated with term selection is as follows. After a
successful factorization attempt is complete, the number of poséibilities
in each term of the polynomial is determined. The features of the term(s)
with minimum number of possibilities have their frequency count(s) increased
(these features are given in Section IV). Then heuristics are comstructed
dynamically (and ordered) to reflect the importance of the features in
selecting a term T to initiate the factorization nrocess, i.e. 1if a feature
has the highest frequency count, then all terms that do not have this feature
are removed from congsideration for T. The order of the heuristics for ferm
selection can vary during program execution since PULYFALT adapts to the

sequence of input polynomials. Learning associated with term selection can

10

also occur after gn unsuccessful factorization attempt since the original
terms in the polyﬁomial are not changed regardless of a successful or un-
successful factorization attempt. In fact, the learning associated with
term selection can be primed prior to any attempts at factorization.

An example of a term selection heuristic in POLYFACT is the following:

H1.1 (E T IN So) ((N H1(G11(T) ,MINDEG) A N H1(G21(T),MINVAR) C FIX123)) §.
This heuristic with name Hl.l resets the use flag (the use flag indicates
membership in a set) of each term T in set SO with-degree (degree of T is
the value of the function Gl1(T)) exceeding MINDEG and with number of
variables (value of function G21(T)) exceeding MINVAR. The value of MINDEG
is the degree of the minimum degreed term in SO’ and the value of MINVAR is
the number of variables in the term with the minimum number of variables in
5o H1 is a predicate, and FIX123 is a consequent that is executed if
the antecedent

N H1(GL1(T) ,MINDEG) A N H1(G21(T), MINVAR)

is satisfied. N, A, and C are the negation, conjunction, and conditional
symbols, respectively.

The possibilities that can be selected as terms in the M-term factor
are ranked according to their apparent merit in determining the correct
M-term factor, and during a factorization attempt the highest ranked usable

possibilities are selected. A usable possibility is one whose use flag is

set. The features (given in Section IV) for possibility selection determine
the rank of each possibility. After a polynomial has been factored, each

of the terms in the M-term factor is examined to determine its set of
characteristic features. A binary vectorv is created with nonzero entries

indicating the features present. Then a heuristic is constructed in first-

I S

11

order pre:.!icate calculus notation using as predicates those features
characterizing the M-term factor.

To facilitate the construction of this set of heuristics, a matrix
is maintained providing a history of the features of ter.s that have
appeared in factors of previous polynomials. After the vector of features
has been created for a term, it is compared with each row in the matrix to
determine if the vector is already present. If so, the frequency count for
the matching row is incremented. If the vector is not in the matrix, it
is added and the corresponding heuristic is created.

When these heuristics are used to rank the possibilities in sets Fj
and Fy (Fo and F; are sets of possibilitieé described in Section IV), a bi-
nary vector is created with nonzero entries appearing in the vector pocsitions
corresponding to the predicates in the satisfied antecedent. When an ante-~
cedent is satisfied, the vector (created by the satisfied antecedent) is
compared to each row in the history matrix. If the vector is in the matrix,
the rank of the possibility is the frequency count, kept as an augmented
column entry in the matched row; otherwise, the rank is zero. The learning
associated with possibility selection can also be primed prior to any
factorization attempts by inputting polynomials in factored form and analyzing
the terms in the factors or simply by factoring polynomials in the training mode.

The possibility selection heuristics are maintained in complete predi-
cate calculus notation and also in the encoded matrix form. The matrix form
is convenient for determining the need for modifications to the heuristics.
The term selection heuristics are kept in an encoded form for all classes of
polynomials and then expanded prior to execution into first-order predicate

calculus notation. The learning associated with term selzction 1is within

12

classes of polynomials and learning associated with possibility selection
carries over from polynomial to polynomial regardless of its classification.
The type of learning described above is generalized learning [18), [20],
{21]. 1In Section V we show that learning is of considerable importance in
improving the efficiency of operation of this factorization scheme. The
composite of learning and polynomial classification provides a powerful
mechanism for: (1) implementing localized learning for each class of poly-
nomials, (2) the automatic extension of heuristics to previously unclassified

polynomials, and (3) the dynamic construction and modification of heuristics.

Analysis of a Factorization Attempt

Regardless of failure or success, the results of each factorization
attempt are analyzed. During this analysis, POLYFACT determines if the
heuristics for term and possibility selection require modification and
whether or not the polynomial warrants reclassification in the case of
failure. If the user desires, learning associated with term and pos-
sibility selection can be ended after an appropriate period of time. Then
heuristics are not modified after a factorization attempt until the learn-

ing indicator is reset.

Nature of the Heuristics in POLYFACT

The creation and modification of all the heuristics in predicate cal-
culus notation are directed by the learning programs in POLYFACT. The set
of heuristics deteruined by the classification scheme for a particular poly-

nomial guides the actual factorization attempt. Each set of heuristics

16

13

consists of several subsets, with each subset having a srecific function
to perform. These subsets are responsible for:

(1) selecting a term T to initiate a factorization attempt,

(2) creating the set‘Fo of all possibilities in the term T,

(3) ranking the possibilities in the set Fp according to their
probable merit in creating the M-term factor,

(4) selecting a possibility P from Fy , where P is the first term
in the M-term factor,

(5) creating the set F, of possibilities used to complete the
M-term factor,

(6) ranking the possibilities in F, , and

(7) creating the remainder of the M-term factor (terms 2 through M)
by the selection of terms from F,.

ITI. RELATED WORK

Unlike POLYFACT, most factorization algorithms [2], [12], [19] and
symbolic and algebraic manipulation systems (8, [9, [14], [15] have been
implemented without any consideration for learning. We try to relate, in
a succint manner, some of the previous research in polynomial factorization

and learning schemes o the research described in this paper.

Factorization Algorithms

The c;assical algorithm for polynomial factorization is Kronecker's algorithm
[12]. This algorithm has been implemented independently by Monove, Bloom, and
Engleman [14] in their MATHLAB system, and by Johnson [11]. Jordan, Kain, and
Clapp [12] describe a method for finding the symbolic factorization of multi-
variable polynomials by using a generalized version of Kronecker's algorithm.

Later references to this work do not establish the implementation of the method.

14

Musser [19] has described algorithms for factoring polynomials with arbitrarily
large integer coefficients. His algorithms are based on the use of modulo p
factorizations and constructions based on Hensel's Lemma [23]. He has
implemented algorithms for the univariate case and is currently implementing

the algorithms for multivariable polynomials, Wang [24] has an efficient imple-
mentation of a version of Berlekamp's algorithm [2] which factors multivariable
polynomials over the integers. His algorithm begins by making substitutions

for all but one of the variables, producing a polynomial in just one variable.
This univariate polynomial is then factored using Berlekamp's algorithm. After
this factorization is done, the multivariable factors are recovered. Berlekamp's
factorization algorithm has had such an impact on the factorization of

polynomials that we outline it below.

Berlekamp's Algorithm

Let f(x) be a univariate squarefree primitive polynomial, All arithmetic
is done modulo q (q a prime). We want to determine r irreducible polynomials
py(x), i=1, 2, ..., r such that

(1) f(x) = pl(x) pz(x)...pr(x)-

If (1) holds and (sl, S.y seey sr) is any r-tuple of integers modulo q then by

2
the Chinese remainder theorem, there is a unique polynomial v(x), deg v(x) <

deg f(x), such that

(2) | vix) = s, mod (Pi(x)) i=1,2, ..., r.

The Chinese remainder theorem applies since the pi(x) are irreducible and therefore

relatively prime.

sy
i)

15
BEST COPY AVA!LABLE
Information about the pi(x) can be obtained from solutions of (2). Since
q -
(3) s, =8, (mod p, (x))

We find that

13

(4) v(x) = v(x) mod (py(x)) 1 =1, 2, ..., r.
Using (1) and (4) we get

v(x) mod (f(x)).

(3) v(x)?
Since

(6) x1=x = (x-0) (x-1) ... (x-(q-1)) mod q
by (3), it follows that

(7) v()d=v(x) = (v(x)-0) (v(x)-1) ... (v(x)-(q-1)).

If v(x) satisfies (5) then every irreducible factor of £(x) must divide one
of the q relatively prime factors of the right~hand side of (7). Since deg

f(x) > deg v(x), we have gcd(f(x), v(x)-s) # 1 or f(x), i.e. it is a nontrivial

factor of f(x). In fact

(8) f(x) = I ged(f(x), v(x)-s).
0 <s<gq

This shows that given any v(x) satisfying (5), we can determine a nontrivial
factorization of f(x) using ged's. Since fast algorithms for finding ged's exist
[4), [8], the factorization of f(x) is fast when the v(x) is determined.

There are q° solutions of (5), and any solution of (5) must satisfy (3).
Knuth [13 provides a method for finding solutions to (5). We outline briefly
the steps for finding solutions to (5). Let deg f(x)= n; we can construct the

n X n matrix

qo,o qo’l *** 9% n-1

(9) Q=) ’

-1,0 9-1,10.80-1, g
= -

LN N] + + [] -
x + qk,l x qk’0 mod (f€x)). Then v(x)

-4 u)
ntgh &

16

Voel xn'l + ...+ v X + o is a solution to (5) if and only if (vo, Viy soes
vn-l) Q= (vo, Vis cees Vn-l) (Knuth [13 gives an algorithm for comstructing

Q). After Q has been constructed triangularize Q - I, where I 18 then x n
identity matrix, finding its rank n-r and r linearly independent vectors v“].
vlz]. caey v[r] such that v[i] Q-1)=(,0, .c., 0) for i =1, 2, ..., T,
At this point, r 1is the number of irreducible factors of f£(x).

The solutions to (5) are the qF polynomials corresponding to the vectors
tlvlll + .00 * crv[t] for all choices of integers 0 L Eyy eeey, £t < Q. Next
calculate ged (f(x), vlz](x) -g8) for O < 8 < q, where v[2](x) is the polynomial
(2] (1]

represented by vector v represents the trivial solution to (5)). Then

by (8) we have a non-trivial factorization of f(x). If vlz](x) does not succeed in
splitting £(x) into r factors, further factors can be obtained by calculating
ged (v[k](x) -5, w(x)) for 0 < 8 < q and all factors w(x) of £(x) found so far,
for k = 3, 4, ... until r factors are obtained.
The algorithm outlined above works quite well when q is small; however,
1f q 1s large then (8) becomes a problem area because it becomes impractical
to compute the gcd of f(x) and v(x) -s for each s € GF(q). Berlekamp's algorithm
also suffers a loss in efficiency when the degree of the polynomial is large.
Berlekamps [2] discusses a method for dealing with (8) when q is large.
This method was originally proposed by Zassenhaus [26]. The Zassenhaus algorithm
transforms the problem of factoring f(x) over GF(qm) into the problem of finding
the roots of a polynomial over GF(q). We outline Zassenhaus' approach for

factoring polynomials f(x) over Z (rational integers) below.

b4

17

Zassenhaus Algorithm

In general it is more difficult to factor a monic polynomial f(x) of degreec
n over Z, 1If C is the maximal absolute value attained by the coefficients
of f(x), the coefficients of a faztor g(x) = xm + blxmﬂ1 + ...+ bm satisfv the
inequalities lbjl j'(?) (c + 1)j =1, 2, ..., m) [27]). 1If these bounds arc nat
too large for m < [%} » the factorization of f(x) over Z can be accomplished
by picking a prime q which is greater than the maximal bound and by then

factoring f(x) over GF(q). Zassenhaus used Hensel's Lemma [23] to devclop an

efficient means for factoring polynomial f(x) over Z. He choses any primr~ q

not dividing the discriminate [13] d(f) and decomposes f(x) into two monic factovs

modulo qZ{x]. f(x) is irreducible over Z if it has no proper decomposition
modulo qZ[x]. Oth.rwise, the decomposition modulo qZ[x]) is raised to 4 modulus

which involves a higher power of q, proceeding from

f(x) = fl(x) fz(x) mod (qu[x]) to
2
£(x) = £1(x) £(x) mod (q“%z[x]).
Eventually, it will be possible for a suitable power of q to decide whetier or

not the decomposition of f£(x) modulo th[x] gives rise to a decomposiiivoin of
f(x) over Z. The power of q in the modulus will quickly approach the above
mentioned coefficient bounds. This procedure has to be carried on recursivelv
for each of the two factors of f(x) over Z that results from the first step.
Finally f(x) i1s decomposed into a product of irreducible factors over . The

weakness of this approach occurs when f(x) has many more factors modulo qZ{x|

~ for the prime q chosen than it has over Z {tself,

The Berlekamp~Hensel algorithm (e.g. Wang's algorithm) does particularly

poorly in one case: the '"bad zero'" case. This case occurs when a substituti..

3.3
ot i

e

18

of zero for all but one of the variables causes the leading coefficient to go
to zero. The heuristic algorithm described in this paper has few problems with

this type of polynomial. More will be said about this in Section V,

Cost of Factorization in Berlekamp-type Algorithms

Musser [19] has shown that Berlekamp's 1967 algorithm [3] is dominated by
n3L(q)2 + nzL(q)3 + nzqu(q)z. The L operator is defined as the number of
digits in q (L(q) can also be interpreted as log (q)). In the multivariate
case it is Hensel's Lemma [23] that dominates in computing costs, not Berlekamp's
algorithm. Musser has shown that the time for application of Hensel's algorithm,
to univariate polynomials, is dominated by nzL(m)3 + nL(m)2 L(c), where
n = deg f(x), m > 2B (B is a bound on the coefficients of the divisors of f(x)),
and c = lf(x)!1 (lf(x)]l is the sum of the moduli of the numerical coefficients
of f(x)). Comments on the cost of the factorization scheme described in this

paper appear 1in Section V.

Legrning Programs

In many cases learning has been studied in a simple environment [17],
{20], [22] so that more attention can be paid to learning schemes than to
the problem environment. We limit the discussion of learning here to a
few generalized learning [21] schemes. Generalized learning has been used
more frequently by researchers in Artificial Intelligence than Any other
learning technique. The reason for their frequent use seems to be twofold:
(1) humans tend to use generalized learning in their learning habits, and (2)
other learning schemes, e;g. rote learning [21] and concept learniﬁg [10] are

applicable only in certain iunstances.

P T
Futvup

19

Generalized learning has usually appeared in the form of modifying weights
in an evaluation function, e.g. in Samuel's checker program [21], Michie and
Ross's Graph Traverser [17], and Slagle and Farrell's MULTIPLE program [22].
Waterman [25] has presented some generalized learning techniques in his
poker playing program. His program generalizes by modifying heuristics,
represented in production form, to catch state vectors that represent
game situations.

This discussion of learning programs is brief; the reason being that
very little use has been made of learning in solving practical problems.

We hope this paper will convince the reader of the importance of learning

as a problem solving tool.

IV. DETAILS OF THE FACTORIZATION SCHEME

In Section Il the reader was introduced to the basic ideas behind this
factorization scheme. In this section a detailed description of the scheme
is given. Before describing the factorization scheme, we point out that not
only is learning itself used to reduce the amount of searching for the factors
of a polynomial, but other héuristics are employed as well, e.g. creation of
the M x N possibility list and its use in creating the set Fos the g.c.d.
constraint, etc. The reader should be able to pick out these heuristics in

this section.

-Responsibilities of the Model=Builder

The model-builder is the most important part of this factorization scheme.

In addition to determining the values of M and N (ﬂfﬂ), the model-builder also:

¢
(3

= —— 20

(1) creates the M x N possibility list (this list contains all the possibiliﬁies
that can be tried as terms in the M-term factors), '?) decides if the
polynomial is simplified, and (3) determines whether or not the pdlynomial
is irreducible,
If a polynomial can be factored into an M x N factorization, then the
terms in the M-term factor must be in the M x N possibility list created by
the model-builder. If a polynomial is reducible and has a term in the
smallest factor (the M-term factor) that is not in the possibility 1list,
then the polynomial cannot be factored into an M x N factorization, i.e.

the values of M and/or N are incorrect.

Calculation of M and N

The values M and N are the two most important quantities determined by
the model-builder. They are the basis for determining the possibility list
mentioned above. Few features of a polynomial give any insight as to their
values. The approach to determining M and N in the initial implementation of
POLYFACT is the following (another more operable approach is described in
Section V):

1. Try to detect whether or not the polynomial is a simplified poly-
nomial.

2. If it is not possible to determine that the polynomial is a simplified
polynomial then assume that it is an unsimplifiable polynomial.

3. Using NTERMS, the number of terms in the polynomial, determine all
possible combinations of M and N such .that M<N and N=NTERMS/M (M
must divide NTERMS).

bl 4, Try all possible values of M and N as determined by 3 above until
factorization 18 successful, or the pairs of values are exhausted.

5. If factorization has failed as outlined in 4, then assume that the
polynomial is a simplified polynomial.

r)
x3

ar [

21

6. Once POLYFACT has assumed that the polynomial is a simplified
polynomial, it uses some more surface features to determine how

the terms were added out or combined.

7. If the coefficients are all unity, then terms are added out in pairs.

B. If some or all of the coefficients are greater than unity, then some
of the terms can be added out in pairs or mav simp!v be combined into

one term.

9., Using 7 and 8, POLYFACT decides whether to increment NTERMS by |
or. 2 and then proceeds as in 3 and 4, respectivelw,

Lach time the value of M and/or N changes, a new M x N possibility list is croat..u.

The success or failure of determining the factorization of a polvnomi.l

depends on the ability to determine the correct values for * and N. The

determination of M and N depends on how many terms were in the polvnomial

prior to being placed in canonical form.

Some tvpes of polvnomials, e.q.

repceated factor, difference of powers, or single variable polvnomials,

usually have a large number of the terms combined durfar ~implification.

However, in many instances these three types ot polvnenials can be classiticd

as special ones and the appropriate heuristics applied, 1f a polynomial

cannot be classified as a special polynomial or an attempted factorization

of it as a special polynomial fails, then factorization proceeds in the

normal manner outlined in this paper.

Repeated factor and difference of power

polvnomials are the onlv special case polynomials considered by this technique.

In some instances substitution is necessary to placc the polvnomial in a form

recognizable as a special polvnomial,

are examples of repeated factor polynomials.,

of power polyvnomial,

Polynomials 10 and 12 in Appendix A

Y-
oot

Polvnomial 13 is a difference

The M x N Possibility List

As we stated previously, the M x N possibility list is the list of
valid possibilities that can be tried as terms in the M-term factor, All
possibilities appear in this list with implicitly defined unit coefficients.
This consideration saves considerable memory in storing the possibility st
and is a valid approach because POLYFACT has not yet created the Fo and Fl
sets, These sets are much smaller than the M x N possibility list, and
the possibilities in them are the only ones that require the coefficients
to be determined. This discussion becomes much clearer when we discuss
the creation of the Fo and F1 sets,

We point out now that one reason the model-builder tries to specify
the correct values ¢f M and N is that the size of the M x N possibility
list decreases as N increases. Thus, in most instances the size of the
M x N possibility list decreases during a sequence of factorization attempts
on a polynomial, thereby decreasing the search space for the terms in the
M-term factor. The suggested modification to the determination of N in
Section V removes, to a certain extent, this advantage; but it simplifies
the model-builder's tasks considerably.

The procedure for determining the M x N possibility list is described
below. The first possibilities to be placed in the possibility list are the
single variable possibilities. For each variable x in the polynomial a

i i

sequence of quantities t.

1s calculated. The quantity t is the number

i

of terms in the polynomial in which x~ (1<i<maxdeg(x)) appears as a factor.

22

The quantity lxi-(txi—K-N)/(M—K), 1 < K < M, where K is the number of terms in

the M-term factor in which xi can appear, is calculated for each xi. If

i

lx%:p. then x 1s a valid possibility. An interpretation of 1xi is that

-y
il

23

it is the number of terms in the N-term factor in which xi appears as a

factor. After all single variable possibilities have been determ’'ned and
entered into the M x N possibility list, the multivariable possibilities,

i.e. possibilities that contain more than one variable, are determined.

The above procedure for determining single variable possibilities is

generalized to multivariable possibilities. The prospective multivariable
possibilities are determined by forming products, in a systematic manner, of

the single variable possibilities already in the M x N'list. Every such product
‘of single variable possibilities 1is not neessarily a valid possibility, i.e.

i i

if x°, where x~ is now a multivariable quantity, does not satisfy the

requirement that lx{zp, then it is not included in the M x N possibility list.

When a possibility is added to the possibility list, the quantities

t i, 1 i, K, and an indicator as to whether it is a single variable or

x x
multivariable possibility become a part of the possibility entry. Some of

these quantities are used later in rénking possibilities.

The Factorization Process

The read.r may want to refer back to Fig. 1 as he begins reading this
section. The material discussed here is associated with subroutine FACTOR
in Fig. 1, and the heuristics used during a factorization attempt. Fig. 3
describes the operation of FACTOR during a factorization attempt.

The set of heuristics determined by traversing the classification tree
guides the actual factorization of a polynomial. The features used in
POLYFACT to classify polynomials are the following:

1. Coefficients are units.

2. The polynomial is a simplified polynomial (versus an unsimplifiable
one),

24

3. Set Fl is empty,

4. The number of possibilities in set F_ is less than (M-1) but greater
than zero, 1

5. Single variable polynomial.

6. Difference of powers polynomial.

7. Repeated factors polynomial.

Features 2, 3, and 4 are hidden features.

Initially, all terms in the polynomiai are members of the set SO’ Each
term in SO is a candidate for the term T1 selected to initiate a factorization
attempt. The followlng features of terms are used to induce learning for
term selection as described in Section II:

1. Degree of the term.

2, Number of variables in the term.

3. Size of the coefficient,

4, 1s the coefficient prime?

The term T is selected from the terms remaining in £, after the term selection

"0
heuristics are applied. Another set S1 is created that consists of all terms
in the polynomial with the exception of T. The terms in S_ are those avai:aible

1
for creating the set F .

The set FO is cre:ted next as indicated in Fig. 3. Fo consists of all the
valid possibilities in T, FO contains those factors of T that are in the
M x N possibility list. In the process of creating FO’ thé coefficient of T
is used to include in Fo not only possibilities with unit coefficients; but
all other valid possibilities (that are factors of T) with coefficients
dividing the coefficient of T. Note that we have to include in Fo only

possibilities with positive coefficients,

" 1T 18 used to indicate the term selected to initiate a factorization attempt,

~r
-

BEST COPY AVAILABLE 25

G

CREATE ‘ RANK
[POSSIBILITIES
SET
S IN
FD
® G
SET
FAIL YES YES °
FLAG .
l NO NO
SggiﬁT SELECT
POSSIBILITY
EXIT Fgou FROM
Fo
CREATE
SET
F
CREATE
M~TERM
FACTOR

Fig. 3. Flow diagram of subroutine FACTOR

a4
.’-.’

FACTOR=1

DIVIDE
FACTOR INTO
SUBJECT
POLYNOMIAL

BEST COPY AVAILABLE

Fig. 3. Continued

STACK
FACTORS

l

EXIT

26

27

The possibilities in Fo are ranked according to their merit (the ranking
process is described in Section 1I). The features used to rank the possibilities
are the following:

1, Is the possibility a single variable possibility?

2. Does the possibility have a low txi value?

3. Does the possibility have a high cxi value?

4. Are all the coefficients in the polynomial units?

5. 1Is the coefficient of the possibility a unit?

6. Is the term T a multivariable term?

The highest ranked usable possibility P in Fo is selected as a candidate
for the first term in the M-term factor and flagged so that it cannot be

selected again. A second set of possibilities F. is created using P. The

1

set Fl consists of all those possibilities TP determined by TP=T"'/TF where:

(1) T' is any term in S, (2) TF=T/P, and (3) TP is a valid possibility,
For a possibility to be considered a candidate for a valid possibility for

FO and Fl,

The set F1 contains all those possibilities that are candidates for terms two

its variable part must be contained in the M x N possibility list.

through M in the M~term factor. The possibilities in F, are ranked using the

same heuristics used to rank the possibifities in F

0
An M-term factor is formed by selecting the highest ranked usable term

from F and the rest of the terms from Fl. If the greatest common divisor
of the terms in this newly formed M-term factor is not one, then another M-term

factor is formed. When the greatest common divisor constraint is satisfied,

" the M-term factor is divided into the subject polynomial, If the division

is successful, the quotient is the N-term factor; otherwise, another combination
of possibilities is selected to create another M-term factor, and the process
is repeated. The greatest common divisor constraint is imposed to reduce the

.1

L

28

number of possible factors that can be generated for the M-term factor. The
use of this constraint is justified because any monomial factor is removed
from the polynomial before the M-term factor is sought.

If all of the possibilities in FO have been selected without a successful
factorization attempt and there are no more terms in S, (S0 after the term
selection heuristics are applied), then the model-builder decides the fate
of the polynomial. If a factorization attempt is successful, both factors
are saved and processed.

Because a record is maintained of all combinations of possibilities tried
for a given factorization attempt, the construction of a previously formed
factor is avoided. In POLYFACT, a possibility search tree (depth-first)
is used to record each combination of possibilities as it is tried. When
a new factor is formed, the tree is searched to determine if it has previously
been used. This tree can be used later in the analysis of a factorization
attempt.

The irreducibility of a polynomial is determined by the model-builder.
This is the most difficult problem associated with polynomial factorization.
The author has found no surface features of polynomials that givea hint to

the solution of the problem, For unsimplifiable polynomials, the scheme

described in this paper can easily determine whether or not a polynomial

is irreducible by simply trying all valiq M x N factorizations with M < N,

A simplified polynomial is considered irreducible by POLYFACT when the M x N
possibility list has less than M possibilities in it, The M x N possibility
11st decreases in size as M and/or N increase in size. We suspect that new
features discovered to improve the detection of irreducibility will be hidden
features. Note that we mentioned earlier that a few reducible polynomials can

fail to be factored by POLYFACT (these are described later in this section);

¢

ot O
e

29

hence, POLYFACT will consider these to be irreducible polynomials. This is
a deficiency that Wang's algorithm can handle since his algorithm does not

terminate until it has proven that it has found all irreducible factors.

A Very Simple Example

We demonstrate the factorization process by factoring the following

simple polynomial (this polynomial happens to be unsimplifiable):

2 5 2 2
x3y2-x2y4-x4z+x3y z-xy32+y z+x2yz -xy3z .

We choose this simple polvriomial to keep thie M x N possibility list and the
F_and ¥ sets small.
0 1
The above polynomial has no monimial factor. The model-builder determines

the initial values for M and N (M=2 and N=4) and the possibility list:

2 2 2 2 2 }
z L]

{x, x°, v, ¥ » 2, Xy, X“y, Xy , X2, yZ, ¥ The features vector for the

polvnomial is the ordered set {1,0,0,0,0,0,0}. The only feature that
POLYFACT detects on the initial classification of this polynomial is that
the coefficients are units; hence, component one in the features vector is set.

Initially, S, contains all eight terms in the polynomial. Next suppose

0
4
the term selection heuristics determine that the term -x z is T. Set S

2 32 3 5 2 2 3
now consists of {xay ,-xzya,x Y Z,=XyY 2,Y Z,X yZ ,=Xy zz}. The set of

1

2
possibilities in T, F., is {x,x ,z,xz}. Suppose that x has the highest rank

0
among the four possihilities in FO. The set Fib 1.e. the set of possibilities
determined by calculating TP=T'/TF, where T' is any term in S1 and
TF-T/P--xaz/x--x3z, contains only -y2 since y2 is the only possibility TP in
the 2 x 4 possibility list (the coefficient of TP is ignored when determining

whether it is in the possibility list).

)
i

31

In many instances a sufficient number of terms for creating this factor are
present in the polynomial and no terms have to be added. Whenever terms must
be added to the polynomial to create the correct M-term factor for successful
factorizatian, POLYFACT adds them in pairs. POLYFACT adds terms only when
the size of set F, is less than (M-1). Added terms are placed in Sl' and

1

the corresponding possibilities are placed in F The new terms in S, have

1’ 1
their use flags turned off until the corresponding possibility in Fi is chosen
as a term in the M-term factor. The new possibilities in Fl are assigned rank
zero so that those already in Fl are selected first.

If the size of Fl is less than (M-1) but not zero, POLYFACT assumes
those possibilities already in Fl are correct and necessary for construction
of the M~term factor. The new possibilities in Fl are selected in serial
order to determine efficiently all the possible combinations that can be
used to create the M-term factors. If the size of F1 is zero, then all
possible combinations of the new possibilities are tried until success or
failure occurs. In this case POLYFACT forms all possible combinations
of the possibilities in Fl in normal fashion, i.e. the possibilities are
ranked, and the highest ranked ones are selected filrst.

The terms missing in polynomials that have unit coefficients are added
in by selecting possibilities from the M x N possibility list and forming
the product with TF (TIF is described above and is the fi’gt term in the
N-term factor)., The terms missing in polynomials with coefficients larger
than one are determined by dividing TF into every term in the polynomial
not associated with a possibility already in Fy and Fi» i.e. the usable
terms in S;. If the quotient (ignoring coefficients) F=T'/TF is a p?ssibility

in the M x N possibility list, then the term T0=F*TF is a candidate for a

missing term; however, the coefficient of F, and hence To, may be incorrect.

g
o’

32

In general, T 1is not the same as T'; however, the variable part of each term

0
is identical. The coefficivnts of ¥ and © are reconstructed by POLYFACT.

. 0
POLYFACT initializes the coefficient of t t.: zero. When F is selected from

Fl as a possibility for the M-term factour, its coefficient is incremented

until it divides at least tw) usable terms in Sl. When the coefficient of

this possibility becomes so large that the possibility has no chance of

dividing at least two usable terms in § , it has its coefficient reset to
1

zero and another possibility is selected fr.o v,
1
Whenever POLYFACT selects a newpossibility from Fl that is associated
with an added term, the use flags of the «orresponding pair of new terms in
Sl are set. Then POLYFACT checks the usable terms in Sl to determine which

vf these terms can be combined with a new term, POLYFACT uses this technique

to reconstruct the polynomial as it exist:d before simplification occurred.

V. RESULTS

This section provides some of the results of factoring over 300 -polynomials
using POLYFACT. Most of the 300 plus polyncmials factored by POLYFACT are
random polynomials with number of terms (after being placed in canonical form)
{2,84], number of variables [2,5], degree of each variable [0,12], and
coefficients [-10000,10000]. The random polynomials are generated by generating
factors randomly, multiplying them together, and then simplifying the expanded

form. The random factors are developed by generating terms randomly by selecting

.the number of variables, degree of each variable, and coefficient from the

range of values for each given above. Appendix A contains a subset of these
polynomials. Space (the 300 plus polynomials in factored form occupy 20

typed pages) does not allow us to include in Appendix A all of the polynomials

By

o Lo

taiud

i

33

factored by POLYFACT during this research; .iwretore, in some instances we
provide tables to illustrate important re-:! - witheut riving all the polynomials
associated with them, e.g. Table I. Table~ ! - [V Jemonstrate the importance

of learning to the efficiency of operation ot POLYFACT. An analysis of

variance experiment is also described, and tie sources located that tend to

influence the factorization times.

Results Assoclated with Learning

These results were obtained to demonstrate that the capabilities of

POLYFACT are increased through learning. scveral approaches could be taken

to assess the influence of learning on program performance or program efficiency.
By efficiency we mean efficiency with respect to execution time and memory
used. An obvious way to measure program efficiency through learning in
POLYFACT is to factor several polynomials with and without the use of learning
and then measure the size of the possibility scarch tree (Section II) in

each case. With thisagproach program efficiency is measured by comparing

the size of the possibility search tree created using learning with that
created without learning. This is characteristic of past approaches to
evaluating learning [17]. While the above approach is valid for evaluating
some programs, we do not believe that is is satisfactory for POLYFACT since

it is only a gross measure of learning. Instead, we choose an approach that
illustrates explicitly the effectiveness of POLYFACT in selecting boch terms

and possibilities.

Term Selection Resultsy

The term selection tests consist of factoring several sequences of

|

34

randomly generated polynomials and determining for each polynomial: (1) the
minimum number of possibilities in a term, (2) the maximum number of possibilities
in a term, and (3) the number of possibilities in the term selected. We

consider that POLYFACT selects "good" terms when it selects terms with a minimum
number of possibilities. The term selection tests are alsc used to determine
whether or not POLYFACT can adjust the order of the term selection heuristics

for randomly generated polynomials with different ranges of values for size

of coefficients, degree of variables, etc.

Table I contains the results of selecting terms for one saquence of
random polynomials. The random polynomials for this sequence have the charac-
teristics: coefficients [-64,64]), [-400,400], [-2500,2500], degree of
variables [0,8], [0,12], [0,12], and number of variables [2,4], [2,5], [2,5],
respectively. The first six polynomials in this sequence are the training
sequence. To conserve space, the random polynomials in this sequence are -
not included in Appendix A.

A summary of the results of the term selection tests is as follows:

l. The term selected to initiate factorization in 73 percent of the
polynomials has the minimum number of possibilities (the percentage
for the sequence in Table I, disregarding the training sequence, is
about 67 percent).

2. POLYFACT orders the term selection heuristics depending on the
characteristics of the polynomials (the order depends on the range

of values Hr number of variables, degree of variables, etc.)

3. Term selection does increase the efficiency of POLYFACT considerably
by allowing, in most cases, for as small a search space as possible.

For the sequence of polynomiais in Table I, the number of variables is the

~ most important feature for selecting a term with minimum number of possibilities

with the degree of term and the size of coefficient of almost equal importance.

Another sequence of polynomials could cause POLYFACT to order the term selection

Y-y
ta &

TABLE I BEST COPY AVAILABLE

TERM SELECTION FOR RANDOM POLYNOMIALS

Minimum Maximum ' Number of

Number of Number of Possibilities
Possibilities Possibilities In Term
Polynomial In A Term In A Term Selected

3 11 36 20

2 20 47 30
17 5 24 6

2 20 47 ‘ 25
18 7 14 7
19 4 13 4
99 2 115 2
112 84 921 104
100 36 1139 36
135 25 160 25
179 14 38 14
180 2 201 2
181 14 1014 14
182 19 166 19
183 11 54 24
184 12 75 , 14
185 4 53 4
186 51 305 54
187 12 174 12
70 8 26 8
188 30 459 30
189 75 468 91
190 15 190 15
191 5 304 5
192 20 204 30
193 23 230 25
194 17 294 17
195 18 130 18
196 21 149 21
197 6 : 379 6
198 17 631 . 34
199 12 146 12
200 27 1140 42
201 6 241 12
202 32 489 32
203 24 398 24
204 30 645 30

i

——— e

e e

36
BEST COPY AVAILABLE

heuristics differently. Learning allows POLYFACT to adjust the order of
heuristics so that a term with the minimum number of possibilities is found

in most cases. The selection of a term is very important because the analysis
of variance results show that thc number of possibilities in a term is ome of

the two main contributors to the factorization time for a polynomial.

Possibility Selection Results

We associate a value that we term efficiency with possibility selection.
The efficiency value is an assessment of the capability of POLYFACT to learn
to rank the possibilities. Before we defineefficiency the following four

definitions are needed:

The possibility search space is the set of possibilitics in the
M x N possibility 1list. '

The actual possibility scarch space is the set of possibilities

generated by the term selected to initiate the factorization
process.

Let ry, Ty, «..y Ty be the n(n>1) values for the ranks of the
possi%iliéies in the actual search space, and suppose the

possibility selected from F, that leads to a succeesful factoriza-
tion has rank ri(Liﬁfp). Tgen the reduced possibility search space
consists of all those possibilities with rank equal to or exceeding r,.

The size of a possibility search space is the number of possibilities
in the search space and is denoted by | possibility search space |.

The efficiency with respect topossibility selection is defined as:

Efficiency = | actual search space | = || reduced search space I
actual search space

The efficiency values shown in Table II are given as a ratio to explicitly
show the size of the actual search space (denominator) and the numbsr of
possibilities ‘n the actual search space that are not members of the reduced
search space (numerator). The efficiency value in decimal form allows the

reader to ascertain that efficiency increases with experience. All

237

I
il

37

possibilities with the same rank have an equally likely chance of being
selected as a term in a factor.

The poésibiliCy selection tests consist of factoring different sequences
of randomly generated polynomials and determining the efficiency values

for each polynomial. The polynomials in Tables II - V are in Appendix A.

~We show that POLYFACT learns to select the "good" possibilities by demonstrating

that the efficiency values tend to increase for successive factorizations of
randomly generated polynowials. An asterisk (*) to the right oi the efficiency
values in Table II indicates that only the highest ranked possibilities are
in the reduced possibility search space.

Table II is one of three tables used in Claybrook [5] to gather the

following results:

1. The size of the actual search space is decreased usually by 50 to
80 percent through learning.

2. As POLYFACT gains in experience it becomes more discriminant in
the ranking of possibilities, i.e. some polynomials have several
different ranks for the possibilities in their actual search spaces.

3. 1In most cases the reduced search space consists of only the highest
ranked possibilities.

Result (?) and Table I show this factorization scheme could be implemented
to consider a factorization attempt to fail when all of the highest ranked
possibilities in Fo have been used as the first term in the M-term factor,
i.e. the possibilities with ranks lower than the highest rank are never
considered. Then usually only 20 to 50 percent of the possibilities in

Fo would even be considered. But this consideration may cause a few
reducible polynomials, e.g. polynomial 39 in Table II, to not be factored
because a lower ranked possibil’ty in Fo led to a successful factorization,
This idea requires that a proper training sequence of polynomials be input

to prime the learning associated with possibility selection.

a9

TABLE 11
LFFICILENCY VALUES BCST co" Avmuau
SEQUENCE #1 SEQUENCE #2
Polynomial Efficiency Polynomial Efficiency
20 0(.00) 20 0(.00)
2 0(.00) 2 0(.00)
21 6/12(.50) 45 1/2(.50)*
22 2/8(.25)*% 46 0/18(.00)
23 1/6(.17) 47 0/46(.00)
24 1/3(.33)* 48 2/8(.25)*
25 3/4(.75)* 49 17/36(.47)
26 6/14(.43)* 50 1/12(.08)*
27 5/14(.36)* 51 10/47(.21)
28 2/6(.33) 52 60/100(.60)*
29 11/16(.69)* 53 37/60(.62)*
30 5/17(.29) 54 3/11(.27)*
31 4/15(.27)*% 55 17/25(.68)*
32 5/11(.45)*% 56 71/99(.71)*
33 22/28(.79)* 57 34/45(.76)%
34 13/22(.59)* 58 81/100(.81)*
35 30/49(.61)* 59 5/7(.71)%
36 23/53(.43) 60 25/33(.75)%
37 3/6(.50)* 61 47/69(.68)*
38 6/10(.60)* 62 9/10(.90)*
39 4/8(.50)
40 44/56(.79)*
41 7/19(.37)%
42 5/6(.83)*
43 21/24(.87)*
b4 50/60(.83)%

Recurrent Factorization Results

Another test that further demonstrates rOLYFACT's learning and factori-

zation capabilities is the recurrent factorization test,.

This test consists

of factoring several sequences of polynomials, generated by the author,

that have the same polynomial appearing more than once in a single sequence.

38

e T

39

We maintain that learning occurs in POLYFACT when the factorization times
decrease for subsequeat factorizations of the same polynomial. The purpose
of Tables III and IV 1s to show that POLYFACT learns from previous experience.
Tabl.s III and IV ghow that POLYFACT usually factors the second and third
occurrence of the same polynomial in a single sequence in less time than for
the initial factoring.
An analysis of Tables LII and iV is summarized briefly:
l. the order of the polynomials in the sequences influence the
factorization times, e.g. polynomials 2 and 9 in sequences
3 and 4,
2. after two or more factorizations of the same polynomial in a
given sequence, further reduction in the factorization time is

usually quite small,

3. POLYFACT is capable of factoring difficult polynomials. e.g.
polynomials 6 and 8, and

4. subsequent factorizations of the same polynomial indicate the

reduction in factorization time is markedly significant (on
the order of 100 to 300 per cent),

Some Comparisons with Wang's Algorithm

We stated previously that Wang's algorithm [24) for polynomial factorization

is an implementation of Berlekamp's algorithm w th some variations. The Wang
algorithm is implemented in LISP 1.5 on a PDP-) at M.I.T. as part of the

MACSYMA system [15]. We do not compare the algorithms themselves because they
are significantly different approaches to polynomial factorization; and hence,
there are few areas for comparison. However, we provide factorization results

of some multivariable polynomials factored by POLYFACT and Wang's algorithm.

‘Table V shows the factorization times for these polynomials,

32

TABLE III

RECURRENT FACTORIZATIONS
BEST COPY AvAlagic
SEQUENCE #1 SEQUENCE #2
Polynomial Factorization Time Polynomial Factorization Time
(seconds) (seconds)

1 2.48 3 2.32
2 16.30 7 16.34
8 864.72 7 11.88
6 781.26 7 11,88
2 8.02 9 222,74
8 208.34 9 221,74
6 331.20 9 174.66
2 7.94 4 53.94
8 208.00 4 29.12
6 380.08 4 28.00
: 5 14.22

5 4.48

5 4,48

TABLE 1V

RECURRENT FACTORIZATIONS

SEQUENCE #3 SEQUENCE {4
Polynomial Factorization Time Polynomial Factorization Time
(seconds) (seconds)

3 2,32 3 2.32
63 169.44 2 12.50
9 554.84 64 112.52
3 95.16 65 9.94
9 174.62 2 11.14
63 95.16 64 102.82
9 174.34 65 11.86
64 180. 64 2 6.86
2 24,28 64 49.42
16 17.14 65 11.86
64 126.30 5 16.98
2 19.96 7 32.16
16 10.06 9 222.68
64 50.02 5 15.62
2 14.08 7 24,72
16 10.06 9 221.46
5 11.68

7 24.72

9 174.62

40

41

TABLE \

COMPARISON OF EACTORLZZTION TLMES (IN SECONDST prer oOPY AVMLABLE: ° -

Polynomial ‘ POLYFACT Wang's Algorithm
i L (with learning)
9 E 174.66 ok
12 - i 6.85 6.74
16 , 10.06 *k
67 3 149.26 kK
68 | 160.03 %
69 | 172.16 - sk
70 | 1.97 1.85
71 | 25.38 23.83
72 | 67.49 76.37
| 73 | 129.01 | 476.11

re reader should note that the 1108 is approximately three times as fast
as the PDP_IO .

The entries in Table V that contain asterisks (**) indicate that the memory

allocation of the PDP-10 at M.I.T. has to be increased to do some of the more
difficult polynomials given. This was not done, for obvious reasons, so no
factorizacién times are available for Wang's algorithm. POLYFACT uses 53K
(K=%02., words of memory on the UNIVAC 1108 for factoring most polynomials.
This 53K words includes 28K words for the storage of approximately 230 sub-
routires and functions that comprise POLYFACT. The actual working space in
POLYFACT is 25K words. Berlekamp's algorithm implemented by Wang has about
40K words (36 bits/word) available for working space.

One of the problems encountered by Wang's implementation is that large

amounts of storage are required in factoring the more difficult polynomials

“(those with high degree and large numbers of terms). The part of POLYFACT

that necessitates the largest use of memory is the M x N possibility 1list and

the possibility search tree. The size of the M x N list is primarily a function

V)

of the number of variables and the degree of the terms (more specifically the

size of the M x N list is a function of the concentration of the variables in

the té;mh.ind.the degree‘Lf the QériQﬁlés). fhe'siié.;f.gﬁe'péééibilié; Tttt
search tree is dependent on the value of M and how well POLYFACT learns to

select terms and possibilities.

Computing Costs

We have tried to develop a formulation of the computing costs for this
factorization technique. However, the heuristic nature of the technique
involving learning has prohibited us from formulating costs. All of the
factors that dominate computing costs, e.g. M and the number of possibilities
in the term T, are unknown until after factorization. The analysis of
variance experiment is our best attempt to isolate the factors that tend to
control the cost of factorization.

The encouraging result from the analysis of variance results is that the
degree of the polynomial does not strongly influence perfrrmance as it does in
Berlekamp~-type algorithms. The analysis of variance tables (tables VI and VII)
show that the factorization time is influenced somewhat by the number of possibilities
in term T, and the number of possibilities in a term is influenced primarily by
the number of variables in the term. Thus, our technique works particularly

well, with respect to computing costs, for multivariable polynomials having at

least one single variable term.

= {sefulness of This Factorizatjon Scheme

The author sees the usefulness of this factorization scheme in four areas,

First, even though this technique is combinatorial in nature, it could in some

o
|

43

cases, obtain a solution more dﬁickly than Hensel's approach. Polynomial 5
in Appendix A is an example of a situation where Hensel's Lemma would blow up
; great deal. Wang's aigoritag.dé;e;d; on substituting 0, 1, or -1 for all
but one of the variables and then factoring the resulting univariate polynomial.
Wang says that it is desirable to substitute as many zeros as possible because
nonzero substitutions can cause some intermediate expression growth. Substitution
of zeros for all but one variable can lead to the "bad zero" case mentioned earlier.
Secondly, this technique could be combined with the Berlekamp~Hensel algorithm
to handle.éome of the polynomials that cause problems for it (the author is
currently working on a paper discussing this idea).

Thirdly, the idea presented through this technique deviates sharply from
the current approaches to polynomial factorization by incorporating learning
in it. Learning allows the algorithm to adjust to the sequence of polynomials
factored with the result that factorizatian is péfformed more efficiently.
We feel that new approaches to factorization should be presented, hopefully
with the prospect that some useful ideas can be extracted. Finally, the
scheme implemented in POLYFACT perforﬁs quite well despite the relatively
inefficient implementation. We feel that the technique merits consideration;

but we still consider the Berlekamp algorithms to be the most general

factorization algorithms available.

Analysis of Variance Experiment

The performance of the mathe¢matically oriemted factoring algorithms,

_ @.g. Mugser's [19] and Berlekamp's [2] become less efficient as the degree of

‘the poiynomial increases. The effect of the number of variables and the size of

the factors on the factorization times of these algorithms has not been publisied.

;ERi(;.

PR Ful Tt Provided by ERIC
umm——

44

In order to determine what lactour aiiluence the factorization times
for our scheme, we consider an experiscesr consistineg of a factorial analy-
sis of variance [1}. The anatvsis of wvariance separates the variations
among all the observations into two parts, each part measuring variability
attributable to some specitic source. The level of significance is con-
sidered to be 10 per cent.

The tactors considered in Table VI are:

1. MM - the size of the M-term factor,

2, NVARS - the number of variables in the polynomial, and

3. WPOSS - the number of possibilities in the term T.

The tactors in Table VIT are:

1. 1t - the size of the M-term factor,

2. N ~ the size of the N-term factor,

3. NV - the numher of variables in the term T, and

4. DEG - the degrce of the term T.

Some of the important obscrvations from the analysis of variance experi-
ment arc:

1. 7The factorization time is quite dependent on the value of M, since
F’90(1.4)=4.54.

2. The factorization time is somewhat dependent on the number of
#
possibilities in the term T, since F 90(2,4)=4.32.

3. The number of possibilities in T depends most heavily on the
number of variables in T, followed bv the depree of T, since

F g0(1,2)=8.53 und F_q0(2,2)=9.0.

4. The degree of the polynomial is not of major importance in deter-
mining the factorization time.

5. The effect) the number of variables in the polynomial on the
factorization time is almost negligible.

A powy
‘1‘

45

TABLE VI
ANALYS1S OF VARIANCE
(FACTORIZATION TIME 15 THE DETENDENT VARITABLE)
BEST COPY AVAILABLE
Source Degrees of sums of Mean F
Freedom Squares Squares
M 1 142,702.062 142,702.62 6.53*%
NVARS 2 2,553.06 1,276.06 0.05
NPOSS 2 158,432.96 79,216.48 3.62
M x NVARS 2 63.80 31.90 0.002
M x NPOSS 2 142,934.83 71,467.41 3.27
NVARS x NPOSS 4 83,081.77 20,770.44 0.95
RESIDUAL 4 87,423.08 21,855.77
TOTAL 17 617,192.12

*Significant at the 0.10 level in this and all following tables.

The reason that the number of variables in the polynomial and the

degree of the polynomial are usually not heavy contributors to the factori-

zation time is that this factcrization scheme tries to. select a term to

initiate factorization that has a minimum number of variables in it and

is of minimum degree.

factors.

This tends to decrease the importance of these two

We note from the analysis of variance experiment that the factoriza-

tion time increases with the size of the M-term factor.

This increase in

factorization time is due partly to the fact that the larger the value of M,

the more combinations of possibilities that can exist.

However, this is not

the only contributor to the value of M influencing the factorization time.

' The primary purpose of the initi{al implementation of this scheme in POLYFACT

was to study learning in a complex problem environment and not necessarily

to produce an efficient implementation.

The importance of the size of M

can be reduced considerably in POLYFACT by improving the technique for

46

TABLE VII

. ANALYSIS OF VARIANCE
(NUMBER OF POSSIBILITIES IN T IS THE DEPENDENT VARIABLE)

BEST COPY AVAILABLE
Source Degrees of Sums of Mean F
Freedom Squares Squares
M 1 425.04 425.04 2.15
N 1l 0.38 0.38 0.002
NV 1 1,926.04 1,926.04 9.68%
DEG 2 3,077.08 1,538.54 7.74
MxN 1 477.04 477.04 2.40
Mx NV 1 165.38 165.38 0.83
M x DEG 2 326.58 163.29 0.82
N x NV 1 715.04 715.04 3.60
N x DEG 2 704.25 352.13 1.77
NV x DEG 2 430.08 215,04 1.08
M x Nx NV 1 3.37 3.37 0.017
M x N x DEG 2 165.08 82.54 0.42
M x NV x DEG 2 150.25 75.13 0.38
N x NV x DEG 2 847.58 423.79 2.13
RESIDUAL 2 397.75 198.88
TOTAL 23 9,810.96

searching the possibility search tree, and by providing a more efficient
division algorithm. The division process in POLYFACT is a heuristic on.

and is not the usual polynomial division algorithms [7], [12].

Other Implementation Considerations and Possible Modifications

We feel that this factorization scheme can be made more efficient and
perhaps more operable than the implementation in POLYFACT. We are currently
investigating the possibility of incorporating ®me of the ideas in the Berlekamp-
Hensel algorithm in this factorization scheme. Also the coefficient bounds

formulation [27] can be used reduce the number of possibilities available in

LY

47

the Fo and Fl sets. The replacement of the heuristic division algorithm by
another polynomial division algorithm will improve the efficiency of operation
considerably. By not requiring an explicit value for N, the number of combinations
of M and N determined by the model~builder is greatly reduced, i.e. only

the value of M will be specified.

The factorization scheme requires the value of N to form the M x N
possibility list; however, in some instances (when terms have been combined)
specifying N depends on predicting the number of terms in the polynomial
prior to simplification. This places an unnecessary constraint on the model-
builder. We propose the following as a possible alternative:

1. Perform factorization as described in this paper when the poly-
nomial is considered unsimplifiable. This allows N to be expli-
citly defined, and the M x N possibility list to be constructed
as outlined in Section 1IV.

2. When a polynomial is considered simplified then:

a., Determine M and create the M x N possibility list by using
N=K.max (M, [NTERMS/M])), where 1<K<I and I is chosen by the
implementer and [] is the greatest integer function.

b. Proceed with the factorization attempt as before; but use
another more efficient division algorithm than the heuristic
one mentioned abov..

c. If the attempt is unsuccessful, modify M and repeat the process.

We suggest that the initial value of K for a factorization attempt (with a
fixed value of M) be greater than one. Then if factorization is unsuccessful,

reduce K to one and try again. The reason for choosing an initial value of K '

greater than one is that the size of the possibility list decreases as N

" increases, and the possibilities for construction of the M-term factor might

be in the smaller list. This could result in a saving of time and memory.

.

——— 48
VI. SUMMARY

POLYFACT demonstrates that learming can be used to improve significantly
the efficiency of a complex program in attempting to solve a difficult problem -
the factorization of multivariable polynomials. The term selection tests show
that POLYFACT selects a term with the minimum number of possibilities in
approximately 73 percent of the polynomials factored. The possibility tests
demonstrate that in most cases POLYFACT need consider only 20 to 50 percent
of the possibilities in the actual search space.

Previous attempts at determining the symbolic factorization of multivariable
polynomials using a purely heuristic approach have indicated very little success.
The factorization tests described in this paper demonstrate that POLYFACT can
factor many nontrivial polynomials. The degree of the polynomial and the
number of variables in the polynomial influence the factorization times very
little, as compared to the Berlekamp algorithms. The size of the M-term factor
proves to influence the factorization times most. Surprisingly POLYFACT
competes with Wang's implementation of Berlekamp's algorithm with respact to
memory usage.

This heuristic factorization scheme appears to work quite well on polynomials
that cause problems for Wang's algorithm, e.g. high degree polynomials, "bad
zero" polynomials, etc. We feel that some of the ideas presented in this paper
can be used to improve the performance of the more general Berlekamp algorithms,
especially in the reconstruction of multivariable factors from the univariate
factorization of the original polynomial. Also, some of the ideas in the

.. Berlekamp algorithms can be used to definitely improve the performance of this

technique implemented in POLYFACT.

Gl
|

49

ACKNOWLEDGEMENTS

The writer wishes to thank Jim Perry of the University of
Connecticut for some critical observations of the initial draft of
this paper; and also Richard Fateman and Paul Wang of Project MAC for
their assistance in factoring some multivariable polynomials using

Dr. Wang's implementation of Berlekamp's algorithm.

~ %

Jis

50

APPENDIX A

POLYNOMIALS Bm m" IVA“ABLE

All of these polynomials were factored by POLYFACT as part of the research

described in this paper.

1.

2.
3.

b,
3.

6.
7.
8.
9.

10.

11.

12.
13.

14.
15.
16.
17.
18.
19,
20.
21.

(8x-5y)(xy-8xz2+z -Syzz)

(Sx“+3x5-6z‘)(7x23+4x2y2-9y3z)

(yzxz3-x3y?) (~=y2224xy+xlz)

(x3y2) (L4xy2244x2y224) (22+x2y 2 24x225+23+x2y 2 34xy2244x 2y 325 4xyzd+ady)
(~y10z144x17y4+x9218) (x9y 3zwl+xbvéz84w7v5)

(5x2y3-6x323+2xyz) (23wh-xy222-x3ywd-xIy6ué) (~z6wh-xby24y223-xIywI-x2y222y24x5z2)
(23w -xy222-x3yw2-xybuh) (-xbuwb-x4y24y2z 3_,3 3ex2y2224y24x57)
(Ay2w2+7x2y2zw2+6x3y+6x32742)(4w+6x222w+4y3zw+3x2y2w2+x2yw2+6y2)
(x2y3-x523+yz)(z3w4-xy2z2—x3yw2~x5y6w‘)(-zﬁwk-x4y2+yzz3-x3yw3-x2y222w2+xsz)
(z+y+x-3)3

(z)(3xyzw-26y3x2n8xyzw2+l4xzz)(-6x3v323w3+27x2 3:3w3-47xyzw-34x2y2w2+5xy2
+47xw3+6xyz w-39x2 2,2 3--21::3 322y 2+3x3 34193 2zw3-37y zzw+26xyz2+26x3y3z
-47x2y2z242-47x2yw2)

(z+y+x-3) 3 (z+y+x-2)2

(x—y-z+w)(x-y+;-w)
(sz)(11y2-22x4+33x5y2+35x3y)(22y5+37x4-1834y5-38x2y“+29x2y3-41x“y2-26x3y4)
(70wutx2ywib2xyzu?) (97xwkh Sxy2zul-1422w2-56y 2wut96xy 2 zwu-86x2 2wt 2xy 2wl u+Blxz)
(29x12y12z3w“+3y2°w15+21x322-15y2216)(x21-y14-z31+w2+y18+32y2-w12z2°)
(z-r-x2y+w-xy2)(—1-x+y-z2w-z+zw2+w)

(xy2+21xz+zy2+x528-9)3

(x-y-24+) (x2-2xy+y2-xztyzau-yurtz2-2zwtu?)
(x2z -y3)(x-y+z)

(x2y) 3y 2+5x-3xhy>-6x2y) (y2- 353y asady)

22.
23.
24,

25.

26.
27.

28.

51

(x8y%) (4y2-2xy2+3x%) (-3+7y2-x2y)
(x)(2x-4y3—5y6~3x3y4)(-6-3xy-4x4y3+3xy4)
(*Yz)(6x-xya*Y3+xY3)(6+6x4Y6*Y-2x6)
(x2yd (Sy+3x3+xdy) (y+ax’ydext)
(x)(4x2-y5+7x2y3+7xy2)(3x+7xy4—6y5-6x“y5)
(6xyz) (6x3-x4y6-5y325) (x3-xt+y%23)

(Yx3)(222+5xy5wk+6x2y522w5)(-7—2xy62w6+y5zw6+7x2y6zsw3-3x4y325w2)

29. ¢ x%y) (6x2+7xy-3y*-4xy?) (- 3x2-x+4xPy-2y°-x6y%)

30.
31.
32.
33.
34,
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,

il
‘6.

(xy)(2x+5y4-2x6y)(6x4-6xy3-7y4+3x3y4-x4y3)
(Y)(5y3+3y“-2x4)(-3y2+7x6y6—kx3y5-7x6)
(2y223)(2z2-3x5y2-3x5y423)(326+3xy6-5x2y522)
(Zxayswa)(4:3+3y3z6w+y2z~6x2y3w)(2xz+2x2w2+2x422w2+zbw)
(ZxAyzz)(3x2+3y335+x2y3z3-222)(-’xy-7x3z2+4y4+3x2y3z3)
(x6y22)(7x-2x2y23+2y3z3)(—6xz3-7y6z-6xy2z2+x2ysz3-6x3y3)
(xzyzzw)(7zSws-3x3y5w2+3xy622w2+7x5y62)(2-2x4y322-x5y3w2+5xy3z3)
(xayzza)(3x2+3yz—5x5y222-5x223)(-3x2-4y5+6x2z5-5x3y424-5x3y6z3)
(x5y3zz)(6y+7xy3z5+x2-5x3y4z4)(-3y3-3x3y-za-7x3zs)

(x2yz) (x4-2y%2242x%2) (3 Iyzs6xyadax’yo2)
(x5y3z)(6:‘-7y4z2-2y4)(7x2z2+3x4y3+7y223-2xy224-7x3z)
(xz)(z3-6x3y24~3xy“)(-7x4-5x2yzz3-4x“z2+7y3z4+4x525)

(y) (2x+x8y26-y) (-3z5-y4=6-x3y"-7xy2)
(3**¥6Y386“Y'4X292)(6y“-6:2y5+3x3y+ky6-6x6y4)
(xyzz)(2x6+5xy2;3-6x3Yz6+7y424)(3xzs—5x5y4z6+y4z5-x5y3-4x3z6)
(11y-22x2+33x2y2435%) (~41+10x > y+22xy3-18x7y 346 7x2y 2-41x 3y 2~ 26x2y I+ 5y2+3x?)
(xy)(47xy+6xy2u+z3w3-13xyz3w2u3)(8xy2+4333y3z3u-23x3y2uu-2032y222w2u2

-46xwu2+45x3—48x3y2zwu-9y3wu+36xy3zwu2+5x2y3wu+36:yz3w3uz+36y3w2u

-29xy3zzw3+16x3y3zzw3+46x323u+31y2w3u2-9y2u2)

I,

2,2 2 2.2 2 2)

47. (xzyzwuz)(y3-32xzzw3u+29yzzw3u—44xw2)(~26x +48yz wu-x"y“2w'u

3 2.3 3.3

y +9x2y-2x2y2+23x yz +3222+19xz3

48. (y%) (21x-32xz+72) (19x+28x ~10x%y32

3
+19x2y222-8xz+22x222-l3x3z *28x2z3) -

3.33 2,333

49, (z)(15x2+3xyw—26y3z—8xyw2)(5xy2-6x3y 2w H27x"y z'w -47xyzw-34x2y2w2

+47xw3+6xyzzw-39x2y222w3-21x3y322w2+3x3yw3+19x3yzzw3-37y222w+26x3y32

-67x2y223w2-47x2yw2)

2

50. (xy)(45x—28x2—46y2)(-14+5xy —34y2-15x2)

3
sl. (zwzu)(42:2+46x3y3u-7x2y3zw2u2)(15x223w—4y3zw2-37x y323w-6x3y3u

2 3
+42x2wu“-2x ywu3-6xzzu3+l9x3zlw2)'

52, (x3yz)(31x2-22y22w—23xyzzw2+40xyw3)(—24w2+2sz3w2—42xy2w3+2823w3-29x22)

53. (y2) (Lbzwt63x3z2uw2-41x3ywrabxlyz) (33zwre9x y+9x 22w - 26x2y22%w)

54. (yz)(14y2-38zw3-41xz-46x3zzw2)(-29y+9xzz w-28x2y2z+43xz3w3+52x3zw3

2,32 2

+4xyzzw3+7x y'z w-8xzz-33x2yzzw3+21y zw2+15xy22-37xy323-21x3yz3

-40y3+35xy3+8y2z3w2+20x22w2)

3

+27y322w2)(—43y2

2 2.3

55. (x)(6y2w-14xy3zw2-34xz +20x yzz+26z W +64x2w2+18xw2

+17x2y3z2w3)

56. (yz)(44x222-41x322-26yz3+24y2w2)(-12x22—38xzw+36x3yzw2-y2w3-6xy2w3)

57. (xyzzz)(19xy2w2+37x3yz3u3—x3z3w2u2-16y2zw3)(33u3~27x22w3~16x2yzw3

+13yw2u3+16x5y2w2u2)

2 2 22
58. (x zzu)(8x-43yzzw-43yzw u) (~8x w u2-16x2y23u+49x3yz3wu2+1223w3

-5x2yzw2u2-40xyzw2u)

59. (2922427y22%-23x3y2-49x) (~22xy+28x2yz-38x%y 2 -4 3x y-18x°22- 78xy 322

3
+35yzz3+4ayz3+y3zz+20xy22—42x3yz3-31x2y2+2y +25yzz~5yz-46x2y2z)

32 2.3 33 3,23

60. (yzz)(39yw-49xz+25x3zw3)(37yzw-48x Zw +49%x Yy w-9z"w -10x2yzz+43xy z4w

;*““ ' +41 2zw3-33x2y22w)

33
61. (xz)(31yz2+20xyw-44x2y2z2w3—39x22w3)(~44yw-9xz w +30z3w-37x3y2w

2
-3x2yzzw3+21yzz3w-20xyz3w2-7yz w2-24x3y3)

— -

S

- 62,
63.
64.

65.
66.

67.

-48x2yuu+27y

BEST COPY AVAILABLE
(yz)(11xw+39x3y2zw-3xzz+yzzw3)(-19w2-4nyzwz-38xyw-47yzwz+2y3zw
-46x2yzzw-27x3y3w+46y222w3-14x2y32)

(e2v3-rv3-t5) (2 wh-xy 22 2-x w2 -xSybut) (-28ub-xby iy 2,3y 33
-x2y2:2w2+xsz)

(24yz+68xz3-72x3y‘)(-x10214+x17y4+x9z18)
(24yz+68xz3-72x3y4)(-y222+xy+xzz)

22 2 2

2 2
(x) (47y+b4y utz“w -13xyz“wu”) (45x +43x2y222u—23x2yw+16xyzzwu-46xu2

2wu+5x2y2w+36xyz2w2u-29y2zw2+14x2y22w2+46x2y2u+8xy
+31ywlu2-9y2u2)

(xzzu[‘)(1522u+10xy3wu2+18xzzw3u2+6y3z2w2)(~12y3zz+48x2y3z3u2

+2x2y2wu2-25yz&w3u2-32y423w4u2-4xw2+8x324wu-llxsywzu-AAxy4z4wu)

68.

69.

70,
71,
72.
73.

2

(6xy+60x2w+31xzu +35y2w2)(24xy+9x2wu2+4422w2u+37xzw2+xy2z2w2u2

2.2

+29y“w +31yzzw2+24x2yzzu2+37yzzu2+23xyz+13x2y2w2u+21xyzwu2+12x2yzw

+8:2w2u2+22xy2+22w2u2+12xy222u2+43xyzzw+43x2yu+39xzwu-':?zwzu2

2
+24xy222wu2+27x2uw2u+41y22+42y w2u2)

333 3

3
(xy)(47xy+4xy2u+23w3-13xyz w2u3)(45x3+43x y 2z u-23x

3zwu2+5x2y3wu+36xyz3w3u2+36y3w2u-29xy3z2w3

yzwu—ZOxzyzzzwzu2

—46xwu2-68x3v?zwu-9y3wu+36xy

+14x3y322w3+46x3y2u+8xy2+31y2w3u2—9y2u2)

(zty+x-3)3
(47xy+z3w2-w2)(65x3+323-y
6

2—9y2+2wz)

5

4
(35x3y+33x5y +11y2—22x)(22y +37xa—18x4y5-38x2y4+29x2y3~41x4y2-26x3y4)

3
(x6y3zz)(29x+3xy2+z3w2-12xvz3w2-w2)(18x y+3z3~y2+14y2w2-8xy2+2wz)

53

i

54

REFERENCES

BEST COPY AVAILABLE

1. Bennett, Carl A, and Franklin, Norman A. Statistical Analysis in Chemistry
and the Chemical Industry, Wiley, 1954, pp. 319-469.

2. Berlekamp, E. R, "Factoring Polynomials Over Large Finite Fields",
Mathematics of Computation, Vol. 24, #111, July, 1970, pp. 713-735.

3. Berlekamp, E. R. "Factoring Polynomials Over Finite Fields", Bell System
Technological Journal, Vol. 46, 1967, pp. 1853-18593.

4. Browm, W. S. "On Euclid's Algorithm and the Computation of Polynomial
Greatest Common Divisors", JACM, Vol. 18, No. 4, October, 1971.

5. Claybrook, B. G. "POLYFACT: A Learning Program that Factors Multivariable
Polynomials", Dissertation, Computer Science/Operations Research Center,
Southern Methodist University, 1972, 194 pp.

6. Claybrook, B. G. and Nance, R. E. '"The Dynamic Creation and Modification
of Heuristics in a Learning Program', In Preparation.

7. Collins, G, E. "PM, A System for Polynomial Manipulation", CACM, Vol. 9,
August, 1966, pp. 578-589.

8. Collins, G. E. '"The SAC-1 System: An Introduction and Survey", Proceedings
of the Second Symposium on Symbolic and Algebraic Manipulation, 1971,
pp . 144-152 .

9, Hearn, Anthony C., "REDUCE 2: A System and Language for Algebraic Manipula-
tion", Proceedings of the Second Symposi 'm on Algebraic and Symbolic
Manipulation, 1971, pp. 128-133,

10. Hunt, Earl B,, Marin, Janet, and Stone, Philip J. Experiments in Induction,
Academic Press, New York, 1966, 247 pp.

- 11. Johmson, S. C. "A Factoring Algorithm for Polynomials Over an Arbitrary
Galois Extension of the Rationals", Bell Laboratories Report, 1966, 38 pp.

12, Jordan, D. E., Kain, R. Y., and Clapp, L. C. "Symbolic Factoring of
Prlynomials in Several Variables', CACM, Vol. 9, August, 1966, pp. 555-569.

13. Knuth, D, E. The Art of Computer Programming, Vol. 2, Seminumerical
Algorithms, Addison-Wesley, Reading, Massachusetts, 1969.

14, Manove, M., Bloom, S., and Engleman, C, "Rational Functioms in MATHLAB",
Symbol Manipulation Languages and Techniques, Daniel Bobrow (ed.),
North-Holland, Amsterdam, 1968, pp. 86-102,

" Martin, W. A. and Fateman, Richard J. "The MACSYMA System", Proceedings
of the Second Symposium on Symbolic and Algebraic Manipulation,
1971, pp. 59-75.

e Ly

i

17.

18.

19,

20.

21.

22,

23.

26.

27. :

55
- BEST COPY AVNLABLE
Mendelson, Elliott. Introduction to Mathematical Logic, Van Nostrand
Reinhold, New York, 1964, 300 pp.

Michie, Donald and Ross, Robert. "Experiements with the Adaptive Graph

Traverser', Machine Intelligence 5, Meltzer, Bernard and Michie,
Donald {cis.), American Elsevier, 1970, pp. 301-320.

Minsky, M. L. "Steps Toward Artificial Intelligence", Proceedings of the
IRE 49, 1961, pp. 8-30.

Musser, David R. "Algorithms for Polynomial Factorization", Ph.D. Thesis,
Computer Sciences Department, University of Wisconsin, 1971, 174 pp.

Newell, Allen, Shaw, J. C. and Simon, H. A, "A Variety of Intelligent

Learning in a General Problem Soiver", Self-Organizing Systems, Yovits,
Marshall and Cameron, Scott (eds.), Pergamon Press, 1960, pp. 153~189.

Samuel, A, L. '"'Some Studies in Machine Learning Using the Game of Checkers",
In Computers and Thought, Feigenbaum, E., and Feldman, J. (eds.),
McGraw-Hill, 1963, pp. 71-105.

Slagle, J. R. and Farrell, C. D. "Experiments in Automatic'Learning for a
Multipurpose Heuristic Program", CACM, Vol. 14, February, 1971, pp. 91-99.

Van der Waerden, B, L. Modern Algebra, Vol. 1, Frederick Ungar Publishing
Company, New York, 1953.

Wang, " 1 S. and Rothschild, L. Preiss. '"Factoring Multivariate Polynomials
Over the Integers', SIGSAM Bulletin, No. 28, December 1973, pp. 21-29,

Waterman, D. A. '"'Ceneralization Learning Techniques for Automating the
Learning of Heuristics', Artificial Intelligence 1, 1970, pp. 121-170.

Zassenhaus, H. "On Hensel Factorization I'", Journal of Number Theory,
Vol. 1, 1969, pp. 291-311.

Zimmer, Horst G. '"Computers and Computations in Algebraic Number Theory",
Proceedings of the Second Symposium on Symbolic and Algebraic
Manipulation, March, 1971, pp. 172-179.

